Almost Random Projection Machine

نویسندگان

  • Wlodzislaw Duch
  • Tomasz Maszczyk
چکیده

Backpropagation of errors is not only hard to justify from biological perspective but also it fails to solve problems requiring complex logic. A simpler algorithm based on generation and filtering of useful random projections has better biological justification, is faster, easier to train and may in practice solve nonseparable problems of higher complexity than typical feedforward neural networks. Estimation of confidence in network decisions is done by visualization of the number of nodes that agree with the final decision.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Almost Random Projection Machine with Margin Maximization and Kernel Features

Almost Random Projection Machine (aRPM) is based on generation and filtering of useful features by linear projections in the original feature space and in various kernel spaces. Projections may be either random or guided by some heuristics, in both cases followed by estimation of relevance of each generated feature. Final results are in the simplest case obtained using simple voting, but linear...

متن کامل

Random Projection and Its Applications

Random Projection is a foundational research topic that connects a bunch of machine learning algorithms under a similar mathematical basis. It is used to reduce the dimensionality of the dataset by projecting the data points efficiently to a smaller dimensions while preserving the original relative distance between the data points. In this paper, we are intended to explain random projection met...

متن کامل

Experimental Analysis on Character Recognition using Singular Value Decomposition and Random Projection

Character recognition, a specific problem in the area of pattern recognition is a sub-process in most of the Optical Character Recognition (OCR) systems. Singular Value Decomposition (SVD) is one of the promising and efficient dimensionality reduction methods, which is already applied and proved in the area of character recognition. Random Projection (RP) is a recently evolved dimension reducti...

متن کامل

Random Projection-Based Anderson-Darling Test for Random Fields

In this paper, we present the Anderson-Darling (AD) and Kolmogorov-Smirnov (KS) goodness of fit statistics for stationary and non-stationary random fields. Namely, we adopt an easy-to-apply method based on a random projection of a Hilbert-valued random field onto the real line R, and then, applying the well-known AD and KS goodness of fit tests. We conclude this paper by studying the behavior o...

متن کامل

Revisiting the Nystrom method for improved large-scale machine learning

We reconsider randomized algorithms for the low-rank approximation of symmetric positive semi-definite (SPSD) matrices such as Laplacian and kernel matrices that arise in data analysis and machine learning applications. Our main results consist of an empirical evaluation of the performance quality and running time of sampling and projection methods on a diverse suite of SPSD matrices. Our resul...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009